Varying fitness functions in genetic algorithm constrained optimization: the cutting stock and unit commitment problems

نویسندگان

  • Vassilios Petridis
  • Spiridon A. Kazarlis
  • A. G. Bakirtzis
چکیده

We present a specific varying fitness function technique in genetic algorithm (GA) constrained optimization. This technique incorporates the problem's constraints into the fitness function in a dynamic way. It consists of forming a fitness function with varying penalty terms. The resulting varying fitness function facilitates the GA search. The performance of the technique is tested on two optimization problems: the cutting stock, and the unit commitment problems. Also, new domain-specific operators are introduced. Solutions obtained by means of the varying and the conventional (nonvarying) fitness function techniques are compared. The results show the superiority of the proposed technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Varying Fitness Functions in Genetic Algorithms: Studying the Rate of Increase of the Dynamic Penalty Terms

In this paper we present a promising technique that enhances the efficiency of GAs, when they are applied to constrained optimisation problems. According to this technique, the problem constraints are included in the fitness function as penalty terms, that vary during the GA evolution, facilitating thus the location of the global optimum and the avoidance of local optima. Moreover we proceed to...

متن کامل

Multi-objective optimization of geometrical parameters for constrained groove pressing of aluminium sheet using a neural network and the genetic algorithm

One of sheet severe plastic deformation (SPD) operation, namely constrained groove pressing (CGP), is investigated here in order to specify the optimum values for geometrical variables of this process on pure aluminium sheets. With this regard, two different objective functions, i.e. the uniformity in the effective strain distribution and the necessary force per unit weight of the specimen, are...

متن کامل

A Multi-Mode Resource-Constrained Optimization of Time-Cost Trade-off Problems in Project Scheduling Using a Genetic Algorithm

In this paper, we present a genetic algorithm (GA) for optimization of a multi-mode resource constrained time cost trade off (MRCTCT) problem. The proposed GA, each activity has several operational modes and each mode identifies a possible executive time and cost of the activity. Beyond earlier studies on time-cost trade-off problem, in MRCTCT problem, resource requirements of each execution mo...

متن کامل

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

Stock Portfolio-Optimization Model by Mean-Semi-Variance Approach Using of Firefly Algorithm and Imperialist Competitive Algorithm

Selecting approaches with appropriate accuracy and suitable speed for the purpose of making decision is one of the managers’ challenges. Also investing decision is one of the main decisions of managers and it can be referred to securities transaction in financial markets which is one of the investments approaches. When some assets and barriers of real world have been considered, optimization of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society

دوره 28 5  شماره 

صفحات  -

تاریخ انتشار 1998